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Crossover and universality in the Wolf-Villain model
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The transition rules of the Wolf-Villain model for the deposition and instantaneous relaxation of particles on
a lattice are expressed as a Langevin equation for the height fluctuations at each site. A coarse-graining
transformation of this equation shows directly that this model belongs to the Edwards-Wilkinson universality
class, in agreement with kinetic Monte Carlo simulations. The crossover from the Mullins-Herring equation is
explained by the transformation under coarse graining of the coefficients in the equation of motion.
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The widespread application of lattice models to epitax
kinetics@1–3# has fostered a huge literature on the statisti
mechanics of growth fronts@4–6#. A central concern in this
work is the identification of scaling regimes at long leng
and time scales and their assignment to universality cla
@4#. Such studies are typically based either on kinetic Mo
Carlo ~KMC! simulations of lattice rules or on
renormalization-group analysis of a Langevin equat
deemed to capture the coarse-grained evolution of the fr
However, simulation requirements can be considerabl
crossover effects are to be eliminated, and
renormalization-group method suffers from there being
systematic way of obtaining a Langevin equation from
rules of a lattice model.

In this paper, we examine the coarse graining of the W
Villain model @7# for the deposition and instantaneous rela
ation of particles on a lattice. First introduced for the lo
temperature growth of group-IV materials@8#, this model has
been the subject of many studies@9–19#. KMC simulations
show a slow crossover to the Edwards-Wilkinson univers
ity class@9–11,15,16#, a conclusion supported by argumen
based on surface diffusion currents@12#. Attempts at a direct
demonstration of this result by coarse graining the latt
Langevin equation@17–20# have relied onad hocregulariza-
tions of the step functions in the transition rules. The res
ing analysis is thereby purely formal, which preempts a
meaningful discussion about crossover and universality
contrast, the method presented here produces a regular
tinuum limit, so we are able to show explicitly that the Wo
Villain model belongs to the Edwards-Wilkinson universal
class. Moreover, the transformation under coarse grain
of the coefficients in the equation of motion explains t
crossover from the Mullins-Herring equation observed
simulations.

We consider a one-dimensional lattice onto which p
ticles are deposited randomly. The deposition rate is take
the unit of time. In the Wolf-Villain model@7,8#, an arriving
particle remains on the original~randomly chosen! site only
if its coordination~the number of nearest neighbors! cannot
be increased by moving to a nearest neighbor site. If o
one nearest neighbor site offers greater coordination than
original site, deposition is onto that site. However, if bo
nearest neighbor sites offer greater coordination than
original site, the deposition site is chosen randomly betw
the two. The equation of motion for the heighthi at sitei is
@20#
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dhi

dt
5@wi

(1)1wi 11
(2) 1wi 21

(3) #1h i , ~1!

in which the wi
( j ) are transition probabilities for a particl

incident on sitei to remain there (j 51), to relax to sitei
21 ( j 52), or to relax to sitei 11 ( j 53), with

wi
(1)1wi

(2)1wi
(3)51, ~2!

and theh i are Gaussian noises that have mean zero
covariance

^h i~t!h j~t8!&5@wi
(1)1wi 11

(2) 1wi 21
(3) #d i j d~t2t8!. ~3!

The wi
( j ) are obtained by applying the relaxation rules

local height configurations. Since these rules are based
coordination, we must include sites out to the second-nea
neighbors of the original site. The required configuratio
can be tabulated by using the step function

u~x!5H 1 if x>0

0 if x,0
~4!

to express the pertinent relative heights between nea
neighbors as an identity:

@u~hi 212hi 22!1Q~hi 212hi 22!#@d~hi ,hi 21!

1Q~hi 212hi !1Q~hi2hi 21!#@d~hi ,hi 11!

1Q~hi2hi 11!1Q~hi 112hi !#@u~hi 112hi 12!

1Q~hi 112hi 12!#51, ~5!

where

Q~hi2hj !512u~hi2hj ! ~6!

and

d~hi ,hj !5u~hi2hj !1u~hj2hi !21 ~7!

is the Kronecker delta. The functions in Eq.~5! test whether
hi5hj , by d(hi ,hj ), hi>hj , by u(hi2hj ), or hi,hj , by
Q(hi2hj ). The expansion of Eq.~5! produces 36 configu-
rations, each of which is assigned to one of thewi

( j ) by the
relaxation rules, so Eq.~2! is satisfied by construction. Th
configurations forwi

(1) are shown in Fig. 1, those forwi
(2) in
©2003 The American Physical Society01-1
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Fig. 2, and those forwi
(3) are mirror images about the centr

( i th! site of the configurations in Fig. 2.
The step functions in Eqs.~5! present a major obstacle fo

coarse graining the equations of motion~1!. We have ad-
dressed this issue@21# by using the following representatio
of u(x):

u~x!5 lim
D→01

H D

a
lnFe(x1a)/D11

ex/D11
G J , ~8!

where 0,a<1. The Taylor series of the regularized form
u is

u~x!5A1
Bx

2a
2

B2x2

8aD
2

Cx3

6aD2 1•••, ~9!

where

A[
D

a
ln@ 1

2 ~11ea/D!#, ~10!

B[
ea/D21

ea/D11
, ~11!

C[
ea/D~ea/D21!

~ea/D11!3
. ~12!

As D→01, A→1, B→1, andC→0, with

FIG. 1. The local configurations that contribute towi
(1) . The

arrow indicates an atom incident on thei th site. Column heights
strictly greater than and strictly equal tohi are as indicated, while
those less than or equal tohi are indicated by broken lines.
01060
A512
D

a
ln 21•••. ~13!

Note that the first two terms in the expansion ofu arefinite
asD→0, with A5u(0), and

1

2a
lim

D→01

B5 1
2 F lim

x→02

S du

dxD1 lim
x→01

S du

dxD G ~14!

is the average of the left-hand and right-hand derivatives ou
at x50. The regularization in Eq.~8! exploits the fact thatu
is required only at the discrete valueshi 612hi , so we have
chosen an interpolation between these points that yield
continuousfunction.

We now transform to coarse-grained space and time v
ablesx and t,

FIG. 2. The local configurations that contribute towi
(2) . The

arrow indicates the deposition site for an atom incident on thei th
site. Where more than one such site is indicated, both choices
equally likely. Column heights strictly greater than and stric
equal tohi are as indicated, while those less than or equal tohi are
indicated by broken lines.
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x5 i e, t5ezt, ~15!

where z is to be determined ande is the coarse-graining
parameter:e51 corresponds to the smoothed lattice mo
ande→0 to the continuum limit. The coarse-grained heig
function u is

u~x,t !5ea~hi2t!, ~16!

wheret is the average growth rate anda is to be determined
Upon applying these transformations and the expansio
Eq. ~9! to Eqs.~1! and ~3!, we obtain the following leading
terms in the equation of motion:

ez2a
]u

]t
5ne22a

]2u

]x2 1l1e422a
]2

]x2 S ]u

]xD 2

1l2e423a
]

]xS ]h

]xD 3

1Ke42a
]4u

]x41e (11z)/2j,

~17!

where

n5
B

a4 ~2A2a!~A2a!2, ~18!

l15
B2

4a4 ~a212aA24A2!1
B2

4a4D

3~4A328aA215a2A22a3!, ~19!

l252
B3

4a4 ~2A2a!2
B3

4a4D
~3A22a!~A2a!

2
C

3a4D2 ~2A2a!~A2a!2, ~20!

K5
B

12a4 ~44A3295aA2164a2A219a3!, ~21!

andj is a Gaussian noise with mean zero and covarianc

^j~x,t !j~x8,t8!&5d~x2x8!d~ t2t8!. ~22!

There are two key considerations for taking the co
tinuum limit of Eq. ~17!. The first is that, to obtain bounde
coefficients, we take the limitD→01 in Eq. ~8! together
with the continuum limite→01 @21,22#. Accordingly, we set
D5ed, whered.0 can be chosen at our convenience. T
second concerns the magnitudes of the coefficients ae
→01. There are two cases:aÞ1 and a51. If aP(0,1),
then ase→01, the leading terms in the coefficients in Eq
~18!–~21! are

n5
1

a4 ~22a!~12a!21O~D!, ~23!

l15
1

4a4D
~428a15a222a3!1O~1!, ~24!
01060
l
t
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l252
1

4a4D
~322a!~12a!1O~1!, ~25!

K5
1

12a4 ~44295a164a2219a3!1O~D!. ~26!

If a51, Eqs.~24! and ~26! remain valid, but Eqs.~23! and
~25! are replaced by

n5~D ln 2!2, ~27!

l252
1

4
~12 ln 2!1O~D!. ~28!

The most direct approach to the continuum limit is o
tained for 0,a,1, and by requiring~i! that ut , uxx , andj
have the same scaling dimensions and~ii ! that these are the
dominant terms ase→0. Condition ~i! necessitates settin
z52 anda5 1

2 , while ~ii ! requires that 0,d,1, so that the
term (ux

3)x does not become more relevant than these o
terms solely as a result of coarse graining. Then, in the li
e→01, we obtain the Edwards-Wilkinson@23# equation:

]u

]t
5n0

]2u

]x21j, ~29!

with

n05
1

a4 ~22a!~12a!2. ~30!

Since the values ofz and a are also those of the Edwards
Wilkinson model @4#, our procedure demonstrates that t
Wolf-Villain model belongs to this universality class.

The Edwards-Wilkinson can also be obtained fora51, in
which casen05(ln 2)2. We must now choosed in the range

(0,1
4 ) to ensure that the dominant terms remainut , uxx , and

j. The corresponding values ofa and z, z5212d and a
5 1

2 1d, have an explicit dependence ond. Therefore, we
regard this as an anomalous special case that we exc
from further discussions.

The transformation of the coefficients under coarse gra
ing can be used to examine the crossover to the Edwa
Wilkinson universality class. We first observe that for 0,a
,1, n.0, and l2,0, while K,0 only for 1.a>aK
[0.774 03 . . . andl1,0 only for 1.a>0.741 94 . . . ; for
other values ofa, K and l2 may be positive, negative, o
change sign as a function ofe. Thus, to avoid introducing
unstable behavior purely as a result of an inappropr
choice of coarse-graining parameters, we will restricta to the
interval (aK,1).

In Fig. 3, we show ne22a, l1e422a, Ke42a, and
l2e423a, with a5 1

2 and d5 1
2 , as a function ofe for a

P(aK,1). Fore51, the magnitude ofK is greater than those
of n andl2 by more than an order of magnitude, and grea
than that ofl1 by at least a factor of 6. Thus, the equation
motion for e51, which corresponds to a smoothed latti
1-3
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model, but with no coarse graining, is given approximat
by the stochastic Mullins-Herring equation@24,25#:

]h

]t
5K0

]4h

]x4 1j, ~31!

FIG. 3. The transformation of the coefficients in Eq.~17! under
coarse graining. The shaded region indicates the values of t
coefficients foraP(aK,1), which guarantees thatK,0 and l1

,0. In each panel, the upper curve corresponds toa51 and the
lower curve toa5aK .
at

e

ka

is

01060
y

whereK0'20.2. This result has been known for some tim
from simulations@7#, but our analytic discussion provide
additional confidence that our method captures the esse
features of this model at the two extremes of coarse grain

Simulations@9# also observe an intermediate crossover
the Villain-Lai-Das Sarma@26,27# equation prior to the final
crossover to the Edwards-Wilkinson universality cla
Within the framework of our analysis, this situation can ar
from the compensating effects of negativel2 and positiven.
In fact, if we are in a regime where the propagator of t
model is determined byuxxxx, rather thanuxx , dynamical
renormalization-group calculations@28# support this sce-
nario. However, a more detailed analysis is required to
tablish a firm conclusion.

In summary, we have used a coarse-graining method
show that, at short length and time scales, the Wolf-Villa
model is approximately described by the Mullins-Herrin
equation, and that, at long length and time scales, the uni
sality class is that of the Edwards-Wilkinson model. O
method is quite general and can be applied in higher spa
dimensions. Indeed, the rich variety of phenomena see
simulations of the Wolf-Villain model on higher-dimension
substrates@9,11# presents an inviting challenge to ou
method. Taking a broader perspective, if a direct coar
graining transformation is not suitable, our method can
used to generate an equation of motion as the initial con
tion for a subsequent renormalization group analysis. T
will provide the basis for an understanding of conservat
nonlinear growth models as the natural expression of part
lar atomistic processes.
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