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Crossover and universality in the Wolf-Villain model
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The transition rules of the Wolf-Villain model for the deposition and instantaneous relaxation of particles on
a lattice are expressed as a Langevin equation for the height fluctuations at each site. A coarse-graining
transformation of this equation shows directly that this model belongs to the Edwards-Wilkinson universality
class, in agreement with kinetic Monte Carlo simulations. The crossover from the Mullins-Herring equation is
explained by the transformation under coarse graining of the coefficients in the equation of motion.
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The widespread application of lattice models to epitaxial dh; N 5 5
kinetics[1—3] has fostered a huge literature on the statistical ar =W+ w@ +w® ]+ 7, (1)

mechanics of growth fronfsl—6]. A central concern in this

work is the identification of scaling regimes at long lengthj, \hich thew( are transition probabilities for a particle
and time scales and their assignment to universality classqe cident on sitlei to remain there j=1), to relax to sitei
[4]. Such studies are typically based either on kinetic Monte 1 (i=2 10 relax to sitd + 1 ._3’ ith
Carlo (KMC) simulations of lattice rules or on a (1=2), or to relax to site (1=3), wi
renormalization-group analysis of a Langevin equation WO+ W@+ w®=1 ©)
deemed to capture the coarse-grained evolution of the front. : : : '

However, simulation requirements can be considerable ifnq the 7 are Gaussian noises that have mean zero and
crossover effects are to be eliminated, and the.g ariance

renormalization-group method suffers from there being no

systematic way of obtaining a Langevin equation from the (. (7 771(T,)>:[Wi(l)+wi(-2¢—)1+wi(i)1]5ij5(7_ 7). (3

rules of a lattice model.

In this paper, we examine the coarse graining of the Wolf-  The w{!) are obtained by applying the relaxation rules to
Villain model [7] for the deposition and instantaneous relax-joca| height configurations. Since these rules are based on
ation of particles on a lattice. First introduced for the low- ¢q4rdination, we must include sites out to the second-nearest
temperature growth of group-IV materidB], th|s.mode_l has neighbors of the original site. The required configurations
been the subject of many studig®-19]. KMC simulations can be tabulated by using the step function
show a slow crossover to the Edwards-Wilkinson universal-
ity class[9-11,15,18 a conclusion supported by arguments 1 if x=0
based on surface diffusion currefif]. Attempts at a direct 0(x)= 0 if 0
demonstration of this result by coarse graining the lattice T x<
Langevin equatiofl7—2Q have relied orad hocregulariza- 1, express the pertinent relative heights between nearest
tions of the step functions in the transition rules. The resu”‘neighbors as an identity:
ing analysis is thereby purely formal, which preempts any

4

meaningful discussion about crossover and universality. In [0(hi_1—hi_5)+O(h,_;—hi_,)][8(h; ,hi_y)
contrast, the method presented here produces a regular con-

tinuum limit, so we are able to show explicitly that the Wolf- +O(hi_y—h)+0O(hi—hi_)][(h; hiq)
Villain model belongs to the Edwards-Wilkinson universality h o h o h
class. Moreover, the transformation under coarse graining FOM=hi )+ O =h)IL6(N 1= hi2)
of the coefficients in the equation of motion explains the +0(h; 1—hi;0)]=1, (5
crossover from the Mullins-Herring equation observed in

simulations. where

We consider a one-dimensional lattice onto which par-
ticles are deposited randomly. The deposition rate is taken as
the unit of time. In the Wolf-Villain mode[7,8], an arriving
particle remains on the origingtandomly chosensite only
if its coordination(the number of nearest neighbprsannot 8(hi ,hj)=6(h;—hj)+6(h;—h;)—1 7
be increased by moving to a nearest neighbor site. If only
one nearest neighbor site offers greater coordination than tHé the Kronecker delta. The functions in H§) test whether
original site, deposition is onto that site. However, if bothhi=h;, by &(h;,h;), hi=h;, by 6(h;—h;), or h;<h;, by
nearest neighbor sites offer greater coordination than th®(h;—h;). The expansion of Eq5) produces 36 configu-
original site, the deposition site is chosen randomly betweenations, each of which is assigned to one of wi¢ by the
the two. The equation of motion for the heidhtat sitei is  relaxation rules, so Eq2) is satisfied by construction. The
[20] configurations fowvi(l) are shown in Fig. 1, those f(Wi(z) in

O(hj—hj)=1-6(h;—h)) (6)

and
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FIG. 1. The local configurations that contribute wd?). The

arrow indicates an atom incident on thiéh site. Column heights

those less than or equal kp are indicated by broken lines.

strictly greater than and strictly equal Ip are as indicated, while ’_\ l—‘ l—‘ ’_\

Fig. 2, and those fon® are mirror images about the central

(ith) site of the configurations in Fig. 2.

{9) {h)

The step functions in Eq$5) present a major obstacle for

coarse graining the equations of moti¢h). We have ad- ] ]
dressed this issu@1] by using the following representation

|

of 8(x):

) A
A(x)= lim gln

X/ A
A0+ e’*+1

e(x-*—a)/A +1

(M )

(8 FIG. 2. The local configurations that contribute w¢? . The
arrow indicates the deposition site for an atom incident onithe
site. Where more than one such site is indicated, both choices are

where 0<a=<1. The Taylor series of the regularized form of equally likely. Column heights strictly greater than and strictly

0is

where
A
A=_In[3(1+e¥%)],

ea/A_l

B= e¥hy1’

ea/A(ea/A _ 1)

C
(e¥8+1)3

As A—0", A—1, B—1, andC—0, with

equal toh; are as indicated, while those less than or equél, tare
indicated by broken lines.

©) A
A=1——=In2+---. (13
a
Note that the first two terms in the expansionéoére finite
asA—0, with A=6(0), and
(10)
lim B=3| li a0 + i a0 14
%a |m+ =3 |m7 dx |m+ ax (14)
A—0 x—0 x—0
(11)

is the average of the left-hand and right-hand derivative® of
atx=0. The regularization in Eq8) exploits the fact thad
is required only at the discrete values.;—h;, so we have
(12) chosen an interpolation between these points that yields a
continuousfunction.
We now transform to coarse-grained space and time vari-
ablesx andt,
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X=ie, t=¢€*T, (15 1
)\2=—%—4A(3—2a)(1—a)+0(1), (25
where z is to be determined and is the coarse-graining
parametere=1 corresponds to the smoothed lattice model 1
ande—0 to the continuum limit. The coarse-grained height K= -——(44—95a+64a%—1%3)+0O(A).  (26)
functionu is 12a

u(x,t)y=e“(h;— 1), (16 If a=1, Eqgs.(24) and (26) remain valid, but Egs(23) and
(25) are replaced by
wherer is the average growth rate ands to be determined.

Upon applying these transformations and the expansion in v=(AIn2)? (27)
Eq. (9) to Egs.(1) and(3), we obtain the following leading
terms in the equation of motion:

1
Ao=——(1-In2)+0(A). (29
_ du A 3 [au)\? 24
GZ QE:V&'Z aﬁ—i_hlell ZQW &
The most direct approach to the continuum limit is ob-
4o (0N 3 J*u /2 tained for 0<a<1, and by requirindi) thatu,, u,,, andé
+ e “(?—X X K64_am+ D2, have the same scaling dimensions dinflthat these are the
dominant terms ag— 0. Condition (i) necessitates setting
(17)  z=2 anda=3, while (ii) requires that & §<1, so that the
term (ui)X does not become more relevant than these other
where . . o
terms solely as a result of coarse graining. Then, in the limit
B e—0", we obtain the Edwards-Wilkinsdr23] equation:
v=—(2A—a)(A—a)?, (18
a au a2u+ -
5 5 A @9
N=-—z(a%+2aA—4A%)+ —;
4a 4a”A with
X (4A3—8aA’+5a’A—2a3), (19 L
B3 B3 v0=g(2—a)(1—a)2. (30)
No=— 4—a4(2A—a)— 4a—4A(3A—2a)(A—a)

Since the values of and « are also those of the Edwards-
) Wilkinson model[4], our procedure demonstrates that the
~ 3aEazPAT (A (20 wolf-villain model belongs to this universality class.
The Edwards-Wilkinson can also be obtainedder1, in
which casevy= (In 2)?>. We must now choosé in the range

(0,7) to ensure that the dominant terms remajn u,,, and
&. The corresponding values af andz, z=2+26 and a
and ¢ is a Gaussian noise with mean zero and covariance =3+ 8, have an explicit dependence @n Therefore, we
regard this as an anomalous special case that we exclude
(XD EX 1)) =d(x—x")d(t—t"). (220 from further discussions.

) ) ] The transformation of the coefficients under coarse grain-
~ There are two key considerations for taking the con-jng can be used to examine the crossover to the Edwards-
tinuum limit of Eq. (17). The first is that, to obtain bounded \yjikinson universality class. We first observe that for 8
coefficients, we take the limiA—0" in Eq. (8) together 1 ,~0 and N,<0, while K<0 only for 1>a=ay
with the continuum limite— 07 [21,22]. Accordingly, we set —qg'774 @ and)\1<,0 only for 1>a=0.7419 . . . ; for
A=e’, where>0 can be chosen at our convenience. Thesher values ofa, K and A, may be positive, negative, or
second concerns the magnitudes of the coefficients as change sign as a function ef Thus, to avoid introducing
—0". There+ are two casesti#1 anda=1. If ac(0,1), ynstable behavior purely as a result of an inappropriate
then ase—~0", the leading terms in the coefficients in EQs. chojice of coarse-graining parameters, we will restitd the

B
K= 15(44A° - 95aA’+64a°A—1%°%),  (21)

(18)—(21) are interval (ax,1).
L In Fig. 3, we showwve® ¢ £ e*72¢ Ke* ¢ and
v=—7(2—a)(1—a)2+O0(A), (23  M2€*7%% with =3 and =3, as a function ofe for a
a

e (ak,1). Fore=1, the magnitude ok is greater than those
of v and\, by more than an order of magnitude, and greater
than that of\ ; by at least a factor of 6. Thus, the equation of

M motion for e=1, which corresponds to a smoothed lattice

=m(4—8a+5a2—2a3)+0(1), (24)
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0.02 0 whereKy~ —0.2. This result has been known for some time
from simulations[7], but our analytic discussion provides
additional confidence that our method captures the essential
features of this model at the two extremes of coarse graining.
Simulations[9] also observe an intermediate crossover to
_0.2 the Villain-Lai-Das Sarm#26,27] equation prior to the final
o (@) (b) crossover to the Edwards-Wilkinson universality class.
0 02 04 06 08 1 0 02040608 1 Within the framework of our analysis, this situation can arise
€ £ from the compensating effects of negativeand positivey.
In fact, if we are in a regime where the propagator of the
model is determined bw,,,,, rather thanu,,, dynamical
renormalization-group calculation28] support this sce-
nario. However, a more detailed analysis is required to es-
a tablish a firm conclusion.
w —0.02 % —0.01 In summary, we have used a coarse-graining method to
show that, at short length and time scales, the Wolf-Villain
© @ mode! is approximately described by_ the Mullins-Herri_ng
—004 55T 0608 —0.026—> 015608 i eqL_Jatlon, angl that, at long length and tl_me_z scales, the univer-
T e T sality class is that of the Edwards-Wilkinson model. Our
method is quite general and can be applied in higher spatial
FIG. 3. The transformation of the coefficients in Efj7) under  dimensions. Indeed, the rich variety of phenomena seen in
coars.e. graining. The shaded. region indicates the values of the%‘?mulations of the Wolf-Villain model on higher-dimensional
coefficients forae (ax,1), which guarantees tha<0 and \; substrates[9,11] presents an inviting challenge to our
<0. In each panel, the upper curve correspondasd and the ; . . )
lower curve toa=a, . me?h.od. Taking a b_roagier perspectlve, if a direct coarse-
graining transformation is not suitable, our method can be

model, but with no coarse graining, is given approximately‘?sed to generate an equation of motion as the initial condi-

veo
©
o
=

K s4——0c

20
o

4

by the stochastic Mullins-Herring equati¢a4,25): tion for a subsequent renormalization group analysis. This
will provide the basis for an understanding of conservative
ah d*h nonlinear growth models as the natural expression of particu-

ot KOW +é, 3D |ar atomistic processes.
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